bitterharvest’s diary

A Bitter Harvestは小説の題名。作者は豪州のPeter Yeldham。苦闘の末に勝ちえた偏見からの解放は命との引換になったという悲しい物語

関手圏

9.関手圏

9.1 小さな圏の圏

圏は、対象と射で構成されていた。そこで、対象を圏とし、射を関手とする圏を考えることができる。しかし、この圏を作るにあたっては少し制約を設けている。これは圏から圏を作るということになるので、集合の集合を考えるときと同じような問題が生じる。

集合の集合にはいわゆるラッセルのパラソックスと呼ばれえるものがある。集合の集合は集合にはならないというパラドックスである(開集合を定義するときに、有限個の開集合の論理積は開集合と定義しているのを思い出してほしい。無限個の開集合の論理和は開集合と定義しているが、無限個の開集合の論理積については定義していない。これはラッセルのパラドックスを避けるための工夫である。無限個の開集合の論理積を許すとどのような矛盾が生じるかを考えると分かるので試みて欲しい)。

このパラドックスが生じないようにするために、圏から圏を構成するためには、小さな圏を用いて圏を構成するという制約を設ける。

小さな圏とは、それを構成する対象も射も集合であるという制約である(そうでないときは大きな圏という)。この制約を用いれば、関手を用いて圏から圏を構成することができる(大きな圏から作られた圏とならない場合がある)。

小さな圏の圏は\(\rm{Cat}\)で表す。

9.2 関手圏

関手を対象とし、自然変換を射とする圏を作成することを考える。

1) 二つの圏から関手圏を作成する

小さな圏を\(\mathcal{C,D}\)をした時、この小さな圏の間の関手を対象とし、関手のコドメイン間の自然変換を射とした圏は関手圏と呼ばれ、\([\mathcal{C},\mathcal{D}]\)あるいは\(\mathcal{D}^\mathcal{C}\)と表される。

それでは、一般的な関手圏を構成してみよう。次の手順に従って作成していく。

1) 対象を小さな圏\(\mathcal{C},\mathcal{D}\)間の関手\(F,G,H,...\)としよう。
2) 射を\(F\)から\(G\)への自然変換\(\alpha\)、\(G\)から\(H\)への自然変換\(\beta\)、\(F\)から\(H\)への自然変換\(\gamma\),...としよう。
3)自然変換のドメインとコドメインはその成分ごとのドメインとコドメインとなるようにしよう。これは次のようになる。\(\alpha\)の成分\(\alpha_A:F(A) \rightarrow G(A)\)とする。\(F\)のドメインは\(A\)である。これのコドメインを\(A'_F\)とする。この時、\(F:A \rightarrow A'_F\)であり、\(F\)のイメージ\(F(A)\)は\(F(A) \subset A'_F\)となる。同様に、\(G\)に対してもコドメイン\(A_G\)が存在する。そして、厳密に\(\alpha_A\)を定義すると\(\alpha_A:A'_F \rightarrow A'_G\)であるが、本質は失われないので、便宜的に\(\alpha_A:F(A) \rightarrow G(A)\)と書くことにする。
4) 恒等射は同じ関手間での自然変換としよう。例えば、関手\(F\)に対する恒等射を\(id_F\)とする。この成分を\(id_A\)とすると、\(id_A : F(A) \rightarrow F(A)\)となる。即ち、\(F:A'_F \rightarrow A'_F\)であり、\(F(x \in A'_F) = x\)である。
5) 自然変換の合成を成分での合成にしよう。例えば、\(\gamma=\alpha \circ \beta\)を次のように成分ごとに定義する。即ち、\(\gamma_A=\alpha_A \circ \beta_A\)とする。

言葉ではわかりにくいので、図で示すことにしよう。対象\(F,G\)と射\(\alpha\)の成分\(\alpha_A\)を示したのが下図である。1)で構成した対象は関手\(F,G\)であり、2)で構成した射は自然変換\(\alpha\)であり、その成分は\(\alpha_A\)である。
f:id:bitterharvest:20170609214635p:plain
この図で次のことに注意してほしい。\(F(A)\)は関手のイメージであり、関手のコドメイン\(A'_F\)は\(F(A) \subset A'_F\)である。同様に、関手\(G\)のコドメイン\(A'_G\)とすると、自然変換\(\alpha\)の成分\(\alpha_A\)は\(\alpha_A : A'_F \rightarrow A'_G\)である。

5)の射の合成は下図のようになる。図では、自然変換\(\alpha\),\(\beta\)の合成が自然変換\(\gamma\)となる様子を示したものである。即ち、それぞれの成分\(\alpha_A\),\(\beta_A\)の合成が\(\gamma\)の成分\(\gamma_A\)となる。
f:id:bitterharvest:20170609222131p:plain

さらに、圏\(\mathcal{C}\)の対象\(A\)が射\(f\)によって対象\(B\)によって写像されるときの、自然変換の関係を示したのが下図である。ここで、\(\alpha_A\)と\(\alpha_B\)は、自然変換\(\alpha\)の成分である。即ち、\(\alpha_A\)はドメインを\(A\)とした成分で、\(\alpha_B\)はドメインを\(B\)とした成分である。\(\beta\),\(\gamma\)についても同様である。
f:id:bitterharvest:20170609222547p:plain
上記の図は可換図式となっていることに注意してほしい。即ち
\begin{eqnarray}
\alpha_B \circ F(f) &=& G(f) \circ \alpha_A \\
\beta_B \circ G(f) &=& H(f) \circ \beta_A \\
\gamma_B \circ F(f)=\beta_B \circ \alpha_B \circ F(f) &=& H(f) \circ \beta_A \circ \alpha_A = H(f) \circ \gamma_A
\end{eqnarray}

また、4)の恒等射を示したのが下図である。
f:id:bitterharvest:20170609222822p:plain

上記の手順によって構成したものが圏となるためには、単位律と結合律を満足しなければならない。

単位律は成分ごとに\(id_A \circ \alpha_A = \alpha_A = \alpha_A id_A\)を示せばよい。なお、前者の\(id_A\)は\(id_A: G(A) \rightarrow G(A)\)であり、 後者の\(id_A\)は\(id_A: F(A) \rightarrow F(A)\)である。

結合律は、自然変換\(\alpha,\beta,\gamma\)が与えられた時、\((\alpha \circ \beta) \circ \gamma=\alpha \circ (\beta \circ \gamma)\)が成り立つことを示せばよい。これは、成分ごとに、即ち、\((\alpha_A \circ \beta_A) \circ \gamma_A=\alpha_A \circ (\beta_A \circ \gamma_A)\)が成り立つことを示せばよい。

2) 関手圏の小さな圏の圏の一員

関手圏は、小さな圏から構成された圏(先の例では\(\mathcal{C,D}\)から構成された圏)と見なすことができるので、小さな圏の圏\(\rm{Cat}\)の一員である。
f:id:bitterharvest:20170610114515p:plain

この圏では、図に示すように、関手を1-cellと呼び、自然変換を2-cellと呼ぶ。また、圏は0-cellと呼ばれる。自然変換を2-cellを射とした圏を2-圏(2-category)という。また、関手圏を小さな圏の対象とすることもできる。これにより、高次の圏を構成できる。

3) 三つの圏から関手圏を作成する

先の例では、二つの圏から関手圏を構成したが、今度は三つの圏から関手圏を構成することを考える。言葉で示すよりも図で示したほうが分かりやすいので、そのようにする。
f:id:bitterharvest:20170610104754p:plain



圏\(\mathcal{C}\)から圏\(\mathcal{D}\)への関手を\(F,F'\)とする。また、\(F\)から\(F'\)への自然変換を\(\alpha\)とする。同様に、圏\(\mathcal{D}\)から圏\(\mathcal{E}\)への関手を\(G,G'\)とし、\(G\)から\(G'\)への自然変換を\(\beta\)とする。この時、対象を\(F,F',G,G'\)とし、射を\(\alpha,\beta\)とした関手圏が上手に示すものである。

また、\(\mathcal{C}\)で対象\(A\)から\(B\)への射を\(f\)とした時、下図のような可換図式を得ることができる。
f:id:bitterharvest:20170610112132p:plain
自然変換としての条件がどのように満たされているかは、とても煩雑な作業だが、読者の方で確認して欲しい。

9.3 圏論をさらに探求すると

以下では、圏論をさらに進めるとどのような世界が開けてくるのかについて簡単に説明する。

1) Bicategory

Bicategoryは2-圏(2-category)の条件を緩めたものである。2-圏では、単位律と結合律が成り立つことを必要条件としていたが、これを同型写像でよいとしたものである。即ち、単位元については、\(id \circ \alpha\)と\(\alpha \circ id\)の間に同型写像が存在すればよいとしたものである。結合律についても、\((\alpha \circ \alpha) \circ \gamma\)と\(\alpha \circ (\alpha \circ \gamma)\)の間に同型写像が存在すればよいとしたものである。

2) Homotopy Type Theory

圏では、射は一方向であった。射が両方向であることを条件に圏と同じような構造を構造を立てることができる。これは圏に代わってGroupoidと呼ばれる。2-categoryを定義したときと同じようにGroupoidの上に高次のGroupoidを構成することができる。高次が無限のレベルになるとHomotopy Type Theoryと呼ばれるものになる。