7.4 随伴の定義
数学で最も重要な概念はと問われた時、皆さんは何と答えるだろうか。私は、「等しい」だと思う。算数から数学へと教科の名前が変わり、少し大人になったと感じさせてくれた中学で、すぐに習ったのが三角形の合同であった。ある三角形を移動したり回転したりして、別の三角形にぴったりと重ね合わせることができるなら、二つの三角形は合同だというものだ。
大学になると「等しい」という概念をもう少し抽象的に学ぶようになる。それは「同型」だ。集合\(A,B\)が存在したときに、次の条件を満足する\(f: A \rightarrow B, g: B \rightarrow A\)が存在するとき、二つの集合は同型と言われる。その条件は、
\begin{eqnarray}
g \circ f=I_A \\
f \circ g=I_B
\end{eqnarray}
である。図で表すと次のようになる。なお、このような写像\(f,g\)を同型写像という。
同型という概念は、合同という概念の上位概念となっているので、合同な二つの三角形はもちろん同型でもある。それでは、さらなる上位概念を圏においても定めたい。即ち、二つの圏が与えられた時に、これらが「等しい」といはどのようなことなのかを定めたい。
上の図は集合と関数から成り立っていたが、これらを対応する圏論の用語で置き換えると、集合のところは(局所的に小さな)圏\(\mathcal{C},\mathcal{D}\)となり、関数のところは関手\(R: \mathcal{C} \rightarrow \mathcal{D}, L: \mathcal{D} \rightarrow \mathcal{C}\)となる。
条件は、そのまま置き換えると、
\begin{eqnarray}
L \circ R=I_\mathcal{C} \\
R \circ L=I_\mathcal{D}
\end{eqnarray}
ところで、上の条件は、左側の関手と右側の関手が等しいと言っている。圏論では、二つの関手が等しいという概念を別に用意している。自然同型(naturally isomorphic)だ。
下図を用いて自然変換(natural transoformation)を復習しておこう。
\(\fbox {自然変換の定義:}\)
上の図で、関手\(F,G\)の自然変換\(\alpha\)とは、次の条件を満たすものである。
1) 自然変換\(\alpha\)は、全ての対象\(X \in \mathcal{C}\)に、\(\mathcal{D}\)の対象間での射\(\alpha_X:F(X) \rightarrow G(X)\)を対応させる。ここで、\(\alpha_X\)は自然変換\(\alpha\)の\(X\)での成分と呼ばれる。
2) 成分は全ての射\(f:X \rightarrow Y\)に対して、次を成り立たせる。
\begin{eqnarray}
\alpha_Y \circ F(f) = G(f) \circ \alpha_X
\end{eqnarray}
なお、ここでは、\(F,G\)が共に共変(covariant)である場合について定義したが、共に反変(contravariant)の時は、\(F(f),G(f)\)の矢印は反対になる。
次に、関手\(F,G\)が自然同型であるとは次のように定義される。なお、自然同型は、英語の方はいくつかの表現があり、先にあげたnaturally isomorphicのほかにnatural isomorphism, natural equivalence, isomorphism of functorsがある。
\(\fbox {自然同型の定義:}\)
全ての\(X \in \mathcal{C}\)の対象\(X\)に対して、射\(\alpha_X\)が\(\mathcal{D}\)において同型射(isomorphic)であるならば、\(\alpha\)は自然同型である。
ここで、同型射とは、同型写像と同じ意味である。即ち、\(\beta_X \circ \alpha_X = I_{F(X)}\), \(\alpha_X \circ \beta_X = I_{G(X)}\)となるような\(\beta_X: G(X) \rightarrow F(X)\)が存在することを言う。
そこで、等しいことの条件を緩めて、自然同型\(\cong\)を用いると次のようになる。
\begin{eqnarray}
L \circ R \cong I_\mathcal{C} \\
R \circ L \cong I_\mathcal{D}
\end{eqnarray}
圏論の人々は、これでも条件がきつすぎると感じているので、さらに条件を次のように緩めている。そして、同型ではなく随伴(adjunction)と呼ぶ。定義は次のようになる。
\(\fbox {随伴の定義:}\)
二つの局所的に小さな圏\(\mathcal{C},\mathcal{D}\)において、関手の対\(R: \mathcal{C} \rightarrow \mathcal{D}, L: \mathcal{D} \rightarrow \mathcal{C}\)が三角恒等式を満たす次の射\(ϵ,η\)を有する時、随伴であるという。また、\(L,R\)のそれぞれを左随伴関手、右随伴関手という。また、\(L \circ R \)は圏\(\mathcal{C}\)での自己関手(endofunctor)、同様に\(R \circ L \)は圏\(\mathcal{D}\)での自己関手となっていることにも注意を払っておく必要がある。
\begin{eqnarray}
ϵ : L \circ R \rightarrow I_\mathcal{C} \\
η : I_\mathcal{D} \rightarrow R \circ L
\end{eqnarray}
三角恒等式
\(ϵ\)を用いて、\(\mathcal{C}\)上では\(L \circ R\)は、\( I_\mathcal{C}\)に置き換えることで\(L \circ R\)を消去することができ、また\(\mathcal{D}\)上では\( I_\mathcal{D}\)を自由に挿入することができるので、\(η\)を用いて\(R \circ L\)作り出すことで、次を得る。
\begin{eqnarray}
L &=& L \circ I_\mathcal{D} \rightarrow L \circ R \circ L \rightarrow I_\mathcal{C} \circ L = L \\
R &=& I_\mathcal{D} \circ R \rightarrow R \circ L \circ R \rightarrow R \circ I_\mathcal{C} = R
\end{eqnarray}
それぞれの式で、左辺から右辺(上の式では\(L\)と\(L\))への射が恒等射となる時、これを三角恒等式という。即ち、
\begin{eqnarray}
ϵ L \circ L η &=& Id_L \\
R ϵ \circ η R &=& Id_R
\end{eqnarray}
三角恒等式の可換図式は以下のようになる。
なお、\(ϵ,η\)はそれぞれ\(counit,unit\)という関数名でも呼ばれる。Haskellではこれらの関数は別の名前で呼ばれている。即ち、\(counit\)はコモナド(comonad)での関数\(extract\)として、\(unit\)はモナド(monad)での関数\(return\)として使われる。