bitterharvest’s diary

A Bitter Harvestは小説の題名。作者は豪州のPeter Yeldham。苦闘の末に勝ちえた偏見からの解放は命との引換になったという悲しい物語

圏論をビジュアルに表現する(2)-随伴

6.3 随伴

随伴は、圏論を代表する概念である。これは、「二つの圏が全く同じとは言わないまでもとても似ている」という考え方を与える。二つの圏\( \mathcal{C,D} \)が与えられた時に、\(LR=I_\mathcal{C}\)と\(RL=I_\mathcal{D}\)を満たすような関手\(L: \mathcal{D} \rightarrow \mathcal{C} \)と関手\(R: \mathcal{C} \rightarrow \mathcal{D} \)が存在するならば、二つの圏は同値、すなわち全く同じである。しかし、二つの圏が同値という考え方は、膠着しすぎていて、あまり面白くない。そこで、少し緩めて、図10に示すように、自然変換
\begin{eqnarray}
ε: LR \rightarrow I_\mathcal{C} \\
η: I_\mathcal{D} \rightarrow RL
\end{eqnarray}
が成り立つならば、同じと考えようというのが随伴である(一般には\(L,R\)は\(F,G\)を用いて記述されるが、どちらを向いている関手であったかが分かりにくくなるので、ここでは矢印の向きを明示してくれる\(L,R\)を用いる)。また随伴は図10の下半分に示してあるcounit-unit恒等式を満たさなければならない。

f:id:bitterharvest:20200312141731p:plain
図10:随伴の定義
最初の\(ε\)はcounitと呼ばれる自然変換である。これは図11に示すように、\( \mathcal{C} \)の任意の対象\(A\)を、\(R\)で\( \mathcal{D} \)に移し、さらにそれを\(L\)で\( \mathcal{C} \)に移す。少し飛躍的な表現で説明するならば、\(\forall A \)に対して\( ε_A: LR(A) \rightarrow I_\mathcal{C}(A) \)によって、「本当の自分に戻れる」ということを表している。
f:id:bitterharvest:20200218094034p:plain
図11:随伴を構成する自然変換counit
二番目の自然変換\(η\)はunitと呼ばれる自然変換である。これは図12に示すように、\( \mathcal{D} \)の任意の対象\(B\)を、\(L\)で\( \mathcal{C} \)に移し、さらにそれを\(R\)で\( \mathcal{D} \)に移す。同じように飛躍的な表現を用いれば、\(\forall A \)に対して\( η_A: I_\mathcal{D} (A) \rightarrow RL (A)\)によって、「自分を別のかたちで表現できる」ということを表している。
f:id:bitterharvest:20200218111120p:plain
図12:随伴を構成する自然変換unit
世の中には「別のかたちで表現するもの」は沢山ある。戦国時代の「かぶく」というのもその一つの例だろうが、身近なところでは、感情と表情の関係だ。人間には、嬉しいとか悲しいとか怒っているとかいう感情があるが、そのときどきに抱いている感情は、表情として顔に現れる。このため、顔に現れる表情は、内面にある感情を「別のかたちで表現している」と見なすことができ、自然変換のunitと考えていいだろう。逆に、顔の表情から内面の感情を知ろうとするのが、「本当の自分に戻る」ということになる。これはcounitである。圏論を定義する自然変換は、このように重要な概念を与えてくれるので、自然科学だけではなく、人文科学や社会科学にも、その応用分野を広げてくれ、とても有用である。

\(ε,η\)をpasting diagramで示すと図13になる。

f:id:bitterharvest:20200218105538p:plain
図13:自然変換\(ε,η\)をpasting diagramで表す

それでは随伴をストリング・ダイアグラムで表すことにしよう。

自然変換\(ε,η\)は、pasting diagramをストリング・ダイアグラムに変換する方法を用いれば簡単に求めることができ、図14のようになる。

f:id:bitterharvest:20200215112635p:plain
図14:随伴を定義する自然変換をPsting diagramで表現する

それでは、counit-unit恒等式について考えよう。これをpasting diagramで表すと図15のようになる。

f:id:bitterharvest:20200222091404p:plain
図15:counit-utit恒等式をpasting diagramで表す
それでは、図15の右上のpasting diagramをストリング・ダイアグラムに変換すると図16のようになる。
f:id:bitterharvest:20200222091427p:plain
図16:counit-utit恒等式をストリング・ダイアグラムで表す―その1
そして、図15の右下のpasting diagramをストリング・ダイアグラムに変換すると図17のようになる。
f:id:bitterharvest:20200222091452p:plain
図17:counit-utit恒等式をストリング・ダイアグラムで表す―その2
Counit-unit恒等式は、ストリング・ダイアグラムで表すとジグザクな線になるので、ジグザグ恒等式(zig-zag equations)と呼ばれる。

随伴をストリング・ダイアグラムで表すことができたので、つぎはモナドに挑戦しよう。